

Research Completion Report

Fax: 88-02-9131581, E-mail: dg@bsti.gov.bd, bsti@bangla.net,, Website: www.bsti.gov.bd

Research Proposal:

Development of an improved method in BSTI for analysis of Benzoic Acid and Sorbic Acid for fruits and vegetable products.

Submitted by:

Md. Shahed Reza, Assistant Director (Chemical) and Shifat Sharmin, Senior Examiner (Chemical)

Bangladesh Standards and Testing Institution (BSTI)

Duration: 14.03.2021 to 14.12.2021

Table of Content

Serial	Title	Description	Page
Number			Number
01	Research Proposal	Development of an improved method in BSTI for analysis of Benzoic Acid and Sorbic Acid for fruits and vegetable products.	3-4
02	Method Validation Protocol	Method validation performance characteristics	5-6
03	Method Validation Report	Method Validation Report for Determination of Benzoic acid and Sorbic acid in Fruit Drinks, Jam and Tomato Paste	7-36
04	Discussion and Conclusion	Discussion and Conclusion about the newly developed improved method	37

Research Proposal

Sl. No. & Title	Description
1. Title of the Research	Development of an improved method in BSTI for analysis of Benzoic Acid and Sorbic Acid for fruits and vegetable products.
2. Research Problem	The producers have been using Benzoic Acid and Sorbic Acid as common chemical preservatives in fruits and vegetable products. There are many defined limits of preservatives in product categories in BDS. The existing method of BSTI is time consuming and manually operated. Therefore, it is necessary to develop an improve method to determine Benzoic Acid and Sorbic Acid accurately in the BSTI laboratory through High Performance Liquid Chromatography (HPLC).
3. Justification	The main route of exposure of the general population to benzoic acid and sorbic acid is likely via foodstuffs that contain the substances naturally or added as antimicrobial agents. There are a few analyses of processed foodstuffs available. They refer to different types of food items like fruit juice, fruit drinks, tomato ketchup etc. Food additive exceeding the permitted levels may cause some adverse reactions, including metabolic acidosis, convulsions, asthma, and allergic reactions. Excess amount of additives are introduced to the food, or the wrong additive is introduced through formulation error. In fruit juices carcinogenic compound benzene is produced due to the presence of benzoic acid and ascorbic acid and this is stimulated by the exposure of light and heat. BSTI set the maximum level of Benzoic and Sorbic acid in many fruit and vegetable product like Fruit juice, Fruit drinks, Fruit -Squash, Jam, Jelly, Fruit Syrup, Tomato ketchup, Tomato paste etc. Bangladesh Food Safety Authority (BFSA) also published a regulation regarding use of additives in 2017. Now many company exporting processed fruits and vegetable products, so it will increase the income of the Government of Bangladesh as well as of BSTI. So it is necessary to analyze Benzoic and Sorbic acid accurately.
4. Gap of Previous Research	Presently titrimetric method is using in BSTI for analysis of Benzoic acid. There are many chemical steps involved in this method and sometimes it is difficult to interpret accurate result from titrimetric method.
5. Audience	The Scientist, Laboratory analyst throughout the world will be the audience.
6. Questions	What are the demerits of the existing method? How BSTI can develop a method to be effective, easier, rapid and fit for purpose for analysis of Benzoic and Sorbic acid by using HPLC in BSTI Laboratory for fruits and vegetable products.
7. Purpose	To develop an efficient and improved method for analysis of Benzoic and Sorbic acid by HPLC in BSTI Laboratory for fruits and vegetable products.
8. Title	Development of an improved method in BSTI for analysis of Benzoic Acid and Sorbic Acid for fruits and vegetable products.
9. Methodology	Extraction of benzoic acid and/or sorbic acid from a test portion will be done by using a mixture of ammonium acetate buffer solution and methanol, under acidic condition. The concentration of benzoic and/or sorbic acid will be determined by means of high performance liquid chromatography (HPLC) using a reverse phase

	column and ultraviolet (UV) detector. This validation is to prove that the method						
	developed for the determination of benzoic and/or sorbic acid in fruits and vegetable						
	products is suitable for its intended use " <i>fit for purpose</i> ". Method Validation will						
	performed using Apple juice as a representative matrix.						
10. Time Frame	The project needs 06 (Six) months time depending on financial and logistic support.						
and Tentative	It requires approximately Taka 1,50,000/- (One lac and fifty thousand) for sample						
Budget	collection, procurement of following reagent, chemicals, Certified Reference						
C	Materials, Spares of HPLC, sample preparation accessories etc.						
	a) Certified Reference Materials- Tk. 40,000 (Forty Thousand only).						
	b) Reagent and Chemical- Tk. 20,000 (Twenty Thousand only).						
	c) Consumables of HPLC- Tk. 60,000 (Sixty Thousand only).						
	 d) Contingency, Travel, Training, Stationary, etc. and others for research work Tk. 30,000 (Thirty Thousand only). 						
	This is a tentative budget. Expenditure for each category may increase or decrease at purchase time (with constant total budget).						
11. Bibliography	Bibliography will be given at the end of research paper.						

Method Validation Protocol

In this research at first the analytical methods were validated. The validation was performed as described in this study in line with international guideline Eurachem. After validation of methods the samples were analyzed using that validated method. The following method validation performance characteristics were performed in this study.

- (a) Selectivity
- (b) Limit of Detection (LOD)
- (c) Limit of Quantification(LOQ)
- (d) Working Range and Linearity
- (e) Accuracy (Recovery)
- (f) Precision (Repeatability)

Selectivity

Selectivity relates to the extent to which the method can be used to determine particular analytes in mixtures or matrices without interferences from other components of similar behavior.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

LOD and LOQ was calculated using the following formula

$$s_0' = s_0 \sqrt{\frac{1}{n} + \frac{1}{n_b}}$$

Where,

 S_0 is the estimated standard deviation of single results at or near zero concentration S_0 'is the standard deviation used for calculating LOD and LOQ.

n is the number of replicate observations averaged when reporting results where each replicate is obtained following the entire measurement procedure.

 n_b is the number of blank observations averaged when calculating the blank correction according to the measurement procedure.

LOD was calculated as 3×So' and LOQ was calculated as 10×So'

Working Range and Linearity

The working range is an interval, in which a method provides results with an acceptable uncertainty. The lower end of the working range is bounded by the limit of quantification LOQ.

The upper end of the working range is defined by concentrations at which significant anomalies in the analytical sensitivity are observed.

Figure 01: Analytical sensitivity, working range and linear range

The Figure-01 shows a response curve obtained with an instrumental method. The working range, linear range, analytical sensitivity, LOD and LOQ are identified.

Accuracy (Recovery)

Accuracy is the closeness of a single result to a reference value. Method validation need to investigate the accuracy of results by considering both systematic and random effects on single results.

Accuracy can be expressed as a relative recovery

$$R(\%) = \frac{x' - \overline{x}}{x_{spike}} \times 100$$

x' = is the mean value of the spiked sample, \overline{x} is the mean value of unspike sample and x_{spike} is the added concentration.

Precision (Repeatability)

Replication is essential for obtaining reliable estimation of precision. Replicate analysis are designed to take into consideration of all the variations in analytical conditions which is expected during routine use of the method. Precision is expressed as a relative standard deviation since it is approximately constant over the range of interest.

Relative Standard Deviation is calculated as RSD $\% = \frac{SD}{Average} \times 100$

Method Validation Report

Method validation report for determination of Benzoic acid and Sorbic acid in Fruit Drink by High Performance Liquid Chromatograph (HPLC)

Selectivity

Analytical selectivity relates to "the extent to which the method can be used to determine particular analytes in mixtures or matrices without interferences from other components of similar behavior" A peak in a chromatographic trace identified as being due to the analyte of interest on the basis that an Reference Material (RM) containing the analyte generates a signal at the same point on the chromatogram.

The above chromatograms are the supportive evidence to demonstrate selectivity of Benzoic Acid and Sorbic Acid in Fruit Drinks.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

<< D	etector A >>	>		
ID#1	Compound	Name:	Benzoic Aci	d
				_

Dail Compound Hame, Delizore Herd							
Title	Sample Name	Ret. Time	Area				
5.0 ppm ben & sor acid 001.lcd	5.0 ppm ben &	10.475	210328				
5.0 ppm ben & sor acid 002.lcd	5.0 ppm ben 8	10.459	210759				
5.0 ppm ben & sor acid 003.lcd	5.0 ppm ben &	10.434	211390				
5.0 ppm ben & sor acid 004.lcd	5.0 ppm ben 8	10.406	211979				
5.0 ppm ben & sor acid 005.lcd	5.0 ppm ben &	10.374	211289				
5.0 ppm ben & sor acid 006.lcd	5.0 ppm ben &	10.340	210980				
5.0 ppm ben & sor acid 007.lcd	5.0 ppm ben &	10.316	209550				
5.0 ppm ben & sor acid 008.lcd	5.0 ppm ben &	10.310	208900				
5.0 ppm ben & sor acid 009.lcd	5.0 ppm ben &	10.306	209404				
5.0 ppm ben & sor acid 010.lcd	5.0 ppm ben 8	10.319	211147				

ID#2 Compound Name: Sorbic Acid

Title	Sample Name	Ret. Time	Area
5.0 ppm ben & sor acid 001.lcd	5.0 ppm ben &	11.497	247283
5.0 ppm ben & sor acid 002.lcd	5.0 ppm ben &	11.480	247703
5.0 ppm ben & sor acid 003.lcd	5.0 ppm ben &	11.455	247988
5.0 ppm ben & sor acid 004.lcd	5.0 ppm ben &	11.426	248557
5.0 ppm ben & sor acid 005.lcd	5.0 ppm ben &	11.393	247613
5.0 ppm ben & sor acid 006.lcd	5.0 ppm ben &	11.358	247345
5.0 ppm ben & sor acid 007.lcd	5.0 ppm ben &	11.334	246009
5.0 ppm ben & sor acid 008.lcd	5.0 ppm ben &	11.328	245094
5.0 ppm ben & sor acid 009.lcd	5.0 ppm ben &	11.324	245464
5.0 ppm ben & sor acid 010.lcd	5.0 ppm ben 8	11.339	247474

We used the below formula for calculation of LOD and LOQ

 s_0 is the estimated standard deviation of *m* single results at or near zero concentration.

 s'_0 is the standard deviation used for calculating LOD and LOQ.

- *n* is the number of replicate observations averaged when reporting results where each replicate is obtained following the entire measurement procedure.
- n_b is the number of blank observations averaged when calculating the blank correction according to the measurement procedure.

LOD= 3×So' and LOQ= 10×So'

For Benzoic Acid

Sl. No	Area	Conc(mg/L)	Sample Weight(g)	Conc(mg/kg)
1	210328	5.0447	10.0303	5.0295
2	210759	5.0547	10.1661	4.9721
3	211390	5.0693	10.0262	5.0560
4	211979	5.0829	10.1151	5.0251
5	211289	5.0670	10.2652	4.9360
6	210980	5.0598	10.2659	4.9287
7	209550	5.0267	10.2887	4.8856
8	208900	5.0116	10.2622	4.8836
9	209404	5.0233	10.0959	4.9756
10	211147	5.0637	10.0265	5.0503
				1

So	1/No. Rep	1/No. Blk	0.10+0.10	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0647	0.10	0.10	0.20	0.45	0.0290	0.0869	0.2895

For Sorbic Acid

Sl. No	Area	Conc(mg/L)	Sample Weight(g)	Conc(mg/kg)
1	247283	5.0119	10.0303	4.9967
2	247703	5.0201	10.1661	4.9381
3	247988	5.0257	10.0262	5.0126
4	248557	5.0369	10.1151	4.9796
5	247613	5.0184	10.2652	4.8887
6	247345	5.0131	10.2659	4.8832
7	246009	4.9868	10.2887	4.8469
8	245094	4.9688	10.2622	4.8418
9	245464	4.9761	10.0959	4.9288
10	247474	5.0156	10.0265	5.0024

So	1/No. Rep	1/No. Blk	0.10+0.10	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0646	0.10	0.10	0.20	0.45	0.0289	0.0867	0.2890

Working Range and Linearity

<< Detector A >>

ID#1 Compound Name: RT:10.549			
Title	Sample Name	Ret, Time	Area
Blank.lcd	Blank	0.000	0
5.0 ppm ben & sor acid.lcd	5.0 ppm ben &	10.549	209618
10.0 ppm ben & sor acid.lcd	10.0 ppm ben	10.531	421058
25.0 ppm ben & sor acid.lcd	25.0 ppm ben	10.527	1068333
50.0 ppm ben & sor acid.lcd	50.0 ppm ben	10.510	2144616
100.0 ppm ben & sor acid.lcd	100.0 ppm bei	10.490	4313631

ID#2 Compound Name: RT:11.570

instite Compound France Performente			
Title	Sample Name	Ret, Time	Area
Blank.lcd	Blank	0.000	0
5.0 ppm ben & sor acid.lcd	5.0 ppm ben &	11.570	246859
10.0 ppm ben & sor acid.lcd	10.0 ppm ben	11.554	496102
25.0 ppm ben & sor acid.lcd	25.0 ppm ben	11.549	1261947
50.0 ppm ben & sor acid.lcd	50.0 ppm ben	11.531	2528494
100.0 ppm ben & sor acid.lcd	100.0 ppm ber	11.508	5077827

Trueness (Spike Recovery)

Name of Analyte	Spike Concentration(mg/L)	Recovery %
Benzoic Acid	50	99.33
Sorbic Acid	50	99.61

Precision (Repeatability)

<< Detector A>> ID#1 Compound Name: Benzoic Acid

Title	Sample Name	Ret. Time	Area
5.0 ppm ben & sor acid 001.lcd	5.0 ppm ben &	10.475	210328
5.0 ppm ben & sor acid 002.lcd	5.0 ppm ben 8	10.459	210759
5.0 ppm ben & sor acid 003.lcd	5.0 ppm ben &	10.434	211390
5.0 ppm ben & sor acid 004.lcd	5.0 ppm ben 8	10.406	211979
5.0 ppm ben & sor acid 005.lcd	5.0 ppm ben &	10.374	211289
5.0 ppm ben & sor acid 006.lcd	5.0 ppm ben &	10.340	210980
5.0 ppm ben & sor acid 007.lcd	5.0 ppm ben 8	10.316	209550
5.0 ppm ben & sor acid 008.lcd	5.0 ppm ben &	10.310	208900
5.0 ppm ben & sor acid 009.lcd	5.0 ppm ben 8	10.306	209404
5.0 ppm ben & sor acid 010.lcd	5.0 ppm ben &	10.319	211147

ID#2 Compound Name: Sorbic Acid

Title	Sample Name	Ret. Time	Area
5.0 ppm ben & sor acid 001.lcd	5.0 ppm ben &	11.497	247283
5.0 ppm ben & sor acid 002.lcd	5.0 ppm ben 8	11.480	247703
5.0 ppm ben & sor acid 003.lcd	5.0 ppm ben &	11.455	247988
5.0 ppm ben & sor acid 004.lcd	5.0 ppm ben 8	11.426	248557
5.0 ppm ben & sor acid 005.lcd	5.0 ppm ben 8	11.393	247613
5.0 ppm ben & sor acid 006.lcd	5.0 ppm ben &	11.358	247345
5.0 ppm ben & sor acid 007.lcd	5.0 ppm ben 8	11.334	246009
5.0 ppm ben & sor acid 008.lcd	5.0 ppm ben 8	11.328	245094
5.0 ppm ben & sor acid 009.lcd	5.0 ppm ben &	11.324	245464
5.0 ppm ben & sor acid 010.lcd	5.0 ppm ben &	11.339	247474

For Benzoic Acid

Sl. No	Area	Conc(mg/L) Sample Weight(g)		Conc(mg/kg)
1	210328	5.0447 10.0303		5.0295
2	210759	5.0547	10.1661	4.9721
3	211390	5.0693	10.0262	5.0560
4	211979	5.0829	10.1151	5.0251
5	211289	5.0670 10.2652		4.9360
6	210980	5.0598	10.2659	4.9287
7	209550	5.0267	10.2887	4.8856
8	208900	5.0116	10.2622	4.8836
9	209404	5.0233	10.0951	4.9760
10	211147	5.0637	10.0265	5.0503
			STDEV(s)	0.0647
			Average	4.9743
			Precision limit	0.1813
			RSD%	0.1301

For S	Sorbic	Acid
-------	--------	------

Sl. No	Area	Conc(mg/L) Sample Weight(g)		Conc(mg/kg)
1	247283	5.0119	5.0119 10.0303	
2	247703	5.0201	10.1661	4.9381
3	247988	5.0257	10.0262	5.0126
4	248557	5.0369	10.1151	4.9796
5	247613	5.0184	10.2652	4.8887
6	247345	5.0131 10.2659		4.8832
7	246009	4.9868 10.2887		4.8469
8	245094	4.9688 10.2622		4.8418
9	245464	4.9761	10.0959	4.9288
10	247474	5.0156	10.0265	5.0024
			STDEV(s)	0.0646
			Average	4.9319
			Precision limit	0.1809
			RSD%	0.1310

Method validation report for determination of Benzoic acid and Sorbic acid in Jam by High Performance Liquid Chromatograph (HPLC)

Selectivity

Analytical selectivity relates to "the extent to which the method can be used to determine particular analytes in mixtures or matrices without interferences from other components of similar behavior" A peak in a chromatographic trace identified as being due to the analyte of interest on the basis that an Reference Material (RM) containing the analyte generates a signal at the same point on the chromatogram.

The above chromatograms are the supportive evidence to demonstrate selectivity of Benzoic Acid and Sorbic Acid in Jam

Limit of Detection (LOD) and Limit of Quantification (LOQ)

<< Detector A >> ID#1 Compound Name: RT:11 159

ID#1 Compound Name. K1.11.159								
Title	Sample Name	Sample ID	Ret, Time	Area				
CH 5217 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spik	11.125	217848				
CH 5217 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	11.097	217790				
CH 5217 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	11.056	218016				
CH 5217 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	11.025	218058				
CH 5217 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	10.998	217867				
CH 5217 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	10.978	217839				
CH 5217 spike with 5.0 ppm 007.lcd	Sample spike	CH/5217 spik	10.964	217962				
CH 5217 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	10.955	217744				
CH 5217 spike with 5.0 ppm 009.lc	Sample spike	CH/5217 spik	10.940	217908				

ID#2 Compound Name: RT:12.249

Title	Sample Name	Sample ID	Ret. Time	Area
CH 5217 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spik	12.214	267122
CH 5217 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	12,185	266895
CH 5217 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	12,144	267403
CH 5217 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	12.111	267353
CH 5217 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	12.084	267050
CH 5217 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	12.065	267064
CH 5217 spike with 5.0 ppm 007.lcd	Sample spike	CH/5217 spik	12.051	267006
CH 5217 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	12.042	266824
CH 5217 spike with 5.0 ppm 009.lcd	Sample spike	CH/5217 spik	12.026	267260

We used the below formula for calculation of LOD and LOQ

$$s_0' = s_0 \sqrt{\frac{1}{n} + \frac{1}{n_0}}$$

- s_0 is the estimated standard deviation of *m* single results at or near zero concentration.
- s'_0 is the standard deviation used for calculating LOD and LOQ.
- *n* is the number of replicate observations averaged when reporting results where each replicate is obtained following the entire measurement procedure.
- n_b is the number of blank observations averaged when calculating the blank correction according to the measurement procedure.

LOD= 3×So' and LOQ= 10×So'

For Benzoic Acid

Sl. No	Area	Conc(mg/L)	Sample Weight(g)	Conc(mg/kg)
1	217848	4.9205	10.0303	4.9056
2	217790	4.9192	10.1661	4.8388
3	218016	4.9244	10.0262	4.9115
4	218058	4.9253	10.1151	4.8693
5	217867	4.9209	10.2652	4.7938
6	217839	4.9203	10.2659	4.7929
7	217962	4.9231	10.2887	4.7850
8	217744	4.9181	10.2622	4.7925
9	217908	4.9219	10.0959	4.8751
10	218114	4.9266	10.0265	4.9136

So	1/No. Rep	1/No. Blk	0.1+0.1	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0537	0.10	0.10	0.20	0.45	0.0240	0.0721	0.2402

For Sorbic Acid

Sl. No	Area	Conc(mg/L)	Sample Weight(g)	Conc(mg/kg)
1	247283	5.0119	10.0303	4.9967
2	247703	5.0201	10.1661	4.9381
3	247988	5.0257	10.0262	5.0126
4	248557	5.0369	10.1151	4.9796
5	247613	5.0184	10.2652	4.8887
6	247345	5.0131	10.2659	4.8832
7	246009	4.9868	10.2887	4.8469
8	245094	4.9688	10.2622	4.8418
9	245464	4.9761	10.0959	4.9288
10	247474	5.0156	10.0265	5.0024

So	1/No. Rep	1/No. Blk	0.1+0.1	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0540	0.10	0.10	0.20	0.45	0.0241	0.0724	0.2414

Working Range and Linearity

<< D)etect	tor A	1>>	
***	-			

ID#1 Compound Name: RT:11.630				
Title	Sample Name	Sample ID	Ret. Time	Area
Ben & Sor 5.0 ppm.lcd	Standard-1	Ben & Sor 5.0	11.630	217223
Ben & Sor 10.0 ppm.lcd	Standard-2	Ben & Sor 10.	11.483	439612
Ben & Sor 25.0 ppm.lcd	Standard-3	Ben & Sor 25.	11.359	1093594
Ben & Sor 50.0 ppm.lcd	Standard-4	Ben & Sor 50.	11.273	2200006
Ben & Sor 100.0 ppm.lcd	Standard-5	Ben & Sor 10	11.229	4360430

ID#2 Compound Name: RT:12.721

Title	Sample Name	Sample ID	Ret. Time	Area
Ben & Sor 5.0 ppm.lcd	Standard-1	Ben & Sor 5.0	12.721	267176
Ben & Sor 10.0 ppm.lcd	Standard-2	Ben & Sor 10.	12,572	539351
Ben & Sor 25.0 ppm.lcd	Standard-3	Ben & Sor 25.	12.448	1345530
Ben & Sor 50.0 ppm.lcd	Standard-4	Ben & Sor 50.	12,362	2702412
Ben & Sor 100.0 ppm.lcd	Standard-5	Ben & Sor 10	12.317	5346147

Trueness (Spike Recovery)

<< Detector A >>				
ID#1 Compound Name: RT:10.910	y			
Title	Sample Name	Sample ID	Ret. Time	Area
CH 5217 spike with 50.0 ppm.lcd	Sample spike	CH/5217 spik	10.910	2161250
ID#2 Compound Name: RT:11.994				
Title	Sample Name	Sample ID	Ret. Time	Area
CH 5217 spike with 50.0 ppm lcd	Sample spike	CH/5217 spik	11.994	2658574

Name of Analyte	Spike Concentration(mg/L)	Recovery %
Benzoic Acid	50	98.90
Sorbic Acid	50	99.15

Precision (Repeatability)

<< Detector A >> ID#1 Compound Name: RT:11.159

Title	Sample Name	Sample ID	Ret, Time	Area
CH 5217 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spik	11.125	217848
CH 5217 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	11.097	217790
CH 5217 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	11.056	218016
CH 5217 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	11.025	218058
CH 5217 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	10.998	217867
CH 5217 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	10.978	217839
CH 5217 spike with 5.0 ppm 007.lcd	Sample spike	CH/5217 spik	10.964	217962
CH 5217 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	10.955	217744
CH 5217 spike with 5.0 ppm 009.lcd	Sample spike	CH/5217 spik	10.940	217908

ID#2 Compound Name: RT:12.249

Title	Sample Name	Sample ID	Ret, Time	Area
CH 5217 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spik	12,214	267122
CH 5217 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	12,185	266895
CH 5217 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	12,144	267403
CH 5217 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	12.111	267353
CH 5217 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	12.084	267050
CH 5217 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	12.065	267064
CH 5217 spike with 5.0 ppm 007.lcd	Sample spike	CH/5217 spik	12.051	267006
CH 5217 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	12.042	266824
CH 5217 spike with 5.0 ppm 009.lcd	Sample spike	CH/5217 spik	12.026	267260

For Benzoic Acid

			Sample	
Sl. No	Area	Conc(mg/L)	Weight(g)	Conc(mg/kg)
1	217848	4.9205	10.0303	4.9056
2	217790	4.9192	10.1661	4.8388
3	218021	4.9245	10.0262	4.9116
4	218058	4.9253	10.1151	4.8693
5	217867	4.9209	10.2652	4.7938
6	217839	4.9203	10.2659	4.7929
7	217962	4.9231	10.2887	4.7850
8	217744	4.9181	10.2622	4.7925
9	217908	4.9219	10.0951	4.8755
10	218114	4.9266	10.0265	4.9136
			STDEV(s)	0.0537
			Average	4.8479
			Precision limit	0.1505
			RSD%	0.1109

For Sorbic Acid

			Sample	
Sl. No	Area	Conc(mg/L)	Weight(g)	Conc(mg/kg)
1	267122	4.8889	10.0303	4.8741
2	266895	4.8847	10.1661	4.8049
3	267403	4.8942	10.0262	4.8814
4	267353	4.8932	10.1151	4.8375
5	267050	4.8876	10.2652	4.7613
6	267064	4.8878	10.2659	4.7612
7	267006	4.8867	10.2887	4.7496
8	266824	4.8833	10.2622	4.7586
9	267260	4.8915	10.0959	4.8450
10	267058	4.8877	10.0265	4.8748
			STDEV(s)	0.0540
			Average	4.8148
			Precision limit	0.1511
			RSD%	0.1121

Method validation report for determination of Benzoic acid and Sorbic acid Concentrations in Tomato Paste by High Performance Liquid Chromatograph (HPLC)

Selectivity

Analytical selectivity relates to "the extent to which the method can be used to determine particular analytes in mixtures or matrices without interferences from other components of similar behavior" A peak in a chromatographic trace identified as being due to the analyte of interest on the basis that an Reference Material (RM) containing the analyte generates a signal at the same point on the chromatogram.

The above chromatograms are the supportive evidence to demonstrate selectivity of Benzoic Acid and Sorbic Acid in Tomato Paste

Limit of Detection (LOD) and Limit of Quantification (LOQ)

<< Detector A >> ID#1 Compound Name: RT:10.573

10π 1 Compound Name. K1.10.373				
Title	Sample Name	Sample ID	Ret. Time	Area
CH 5720 spike with 5.0 ppm 001.lc	Sample spike	CH/5217 spik	10.710	247371
CH 5720 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	10.687	248011
CH 5720 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	10.663	248532
CH 5720 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	10.639	248865
CH 5720 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	10.624	249367
CH 5720 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	10.613	249140
CH 5720 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	10.607	249395
CH 5720 spike with 5.0 ppm 009.lcd	Sample spike	CH/5217 spik	10.600	249363

ID#2 Compound Name: RT:11.760

Title	Sample Name	Sample ID	Ret. Time	Area
CH 5720 spike with 5.0 ppm 001.lc	Sample spike	CH/5217 spike	11.905	284325
CH 5720 spike with 5.0 ppm 002.lc	Sample spike	CH/5217 spik	11.879	284233
CH 5720 spike with 5.0 ppm 003.lc	Sample spike	CH/5217 spik	11.855	284231
CH 5720 spike with 5.0 ppm 004.lc	Sample spike	CH/5217 spik	11.831	284041
CH 5720 spike with 5.0 ppm 005.lc	Sample spike	CH/5217 spike	11.815	284442
CH 5720 spike with 5.0 ppm 006.lc	Sample spike	CH/5217 spike	11.804	284111
CH 5720 spike with 5.0 ppm 008.lc	Sample spike	CH/5217 spike	11.797	283996
CH 5720 spike with 5.0 ppm 009.lc	Sample spike	CH/5217 spike	11.791	283852

We used the below formula for calculation of LOD and LOQ

$$s_0' = s_0 \sqrt{\frac{1}{n} + \frac{1}{n_0}}$$

- s_0 is the estimated standard deviation of *m* single results at or near zero concentration.
- s'_0 is the standard deviation used for calculating LOD and LOQ.
- *n* is the number of replicate observations averaged when reporting results where each replicate is obtained following the entire measurement procedure.
- n_b is the number of blank observations averaged when calculating the blank correction according to the measurement procedure.

LOD = 3×So' and LOQ = 10×So'

For Benzoic Acid

99 99
99
89
571
69
15
50
84
60
91

So	1/No. Rep	1/No. Blk	G20+H20	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0474	0.10	0.10	0.20	0.45	0.0212	0.0636	0.2119

For Sorbic Acid

Sl. No	Area	Conc(mg/L)	Sample Weight(g)	Conc(mg/kg)
1	284325	5.2104	10.0303	5.1946
2	284233	5.2087	10.1661	5.1236
3	284231	5.2086	10.0262	5.1950
4	284041	5.2051	10.1151	5.1458
5	284442	5.2126	10.2652	5.0779
6	284111	5.2064	10.2659	5.0715
7	283996	5.2042	10.2887	5.0582
8	283852	5.2015	10.2622	5.0686
9	287260	5.2652	10.0959	5.2152
10	287058	5.2614	10.0265	5.2475

So	1/No. Rep	1/No. Blk	G20+H20	SQRT of 0.20	So'	LOD(mg/kg)	LOQ(mg/kg)
0.0698	0.10	0.10	0.20	0.45	0.0312	0.0937	0.3122

Working Range and Linearity

<< Detector A >> ID#1 Compound Name: RT:10.549 Title Ret. Time 0,000 10,549 10,531 10,527 10,510 10,490 Sample Name Blank Area Title Blank.lcd 5.0 ppm ben & sor acid.lcd 10.0 ppm ben & sor acid.lcd 25.0 ppm ben & sor acid.lcd 50.0 ppm ben & sor acid.lcd 100.0 ppm ben & sor acid.lcd 0 5.0 ppm ben & 10.0 ppm ben 25.0 ppm ben 50.0 ppm ben 100.0 ppm ben 0 209618 421058 1068333 2144616 4313631

ID#2 Compound Name: RT:11.570

Title	Sample Name	Ret. Time	Area
Blank.lcd	Blank	0.000	0
5.0 ppm ben & sor acid.lcd	5.0 ppm ben &	11.570	246859
10.0 ppm ben & sor acid.lcd	10.0 ppm ben	11.554	496102
25.0 ppm ben & sor acid.lcd	25.0 ppm ben	11.549	1261947
50.0 ppm ben & sor acid.lcd	50.0 ppm ben	11.531	2528494
100.0 ppm ben & sor acid.lcd	100.0 ppm bei	11.508	5077827

Conc(mg/L)	Area	5000000 ¬
0	0	4500000 - y = 43644x + 3100
5	217223	$4000000 - R^2 = 1$
10	439612	3500000 -
25	1093594	3000000 -
50	2200006	Benzoic Acid
100	4360430	
Intercept	3099.9562	
Slope	43643.5014	500000 -
		0
		0 50 100 150
Conc(mg/L)	Area	6000000 ¬
0	0	y = 50820 y = 7418.9
5	246859	$5000000 - R^2 = 1$
10	496102	4000000
25	1261947	4000000
50	2528494	3000000 -
100	5077827	Sorbic Acid
Intercept	-7418.8906	
Slope	50819.6965	1000000 -
		0 50 100 150
		-1000000

Trueness (Spike Recovery)

<< Detector A >>				
ID#1 Compound Name: RT:10.573				
Title	Sample Name	Sample ID	Ret, Time	Area
CH 5720 spike with 50.0 ppm.lcd	Sample spike	CH/5217 spik	10.573	2004172

ID#2 Compound Name: RT:11.760				
Title	Sample Name	Sample ID	Ret, Time	Area
CH 5720 spike with 50.0 ppm.lcd	Sample spike	CH/5217 spik	11.760	2448812

Name of Analyte	Spike Concentration(mg/L)	Recovery %
Benzoic Acid	50	91.70
Sorbic Acid	50	91.31

Precision (Repeatability)

<< Detector A >> ID#1 Compound Name: RT:10.573

Title	Sample Name	Sample ID	Ret. Time	Area
CH 5720 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spike	10.710	247371
CH 5720 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	10.687	248011
CH 5720 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	10.663	248532
CH 5720 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spike	10.639	248865
CH 5720 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	10.624	249367
CH 5720 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spik	10.613	249140
CH 5720 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	10.607	249395
CH 5720 spike with 5.0 ppm 009.lc	Sample spike	CH/5217 spike	10.600	249363

ID#2 Compound Name: RT:11.760

Title	Sample Name	Sample ID	Ret. Time	Area
CH 5720 spike with 5.0 ppm 001.lcd	Sample spike	CH/5217 spike	11.905	284325
CH 5720 spike with 5.0 ppm 002.lcd	Sample spike	CH/5217 spik	11.879	284233
CH 5720 spike with 5.0 ppm 003.lcd	Sample spike	CH/5217 spik	11.855	284231
CH 5720 spike with 5.0 ppm 004.lcd	Sample spike	CH/5217 spik	11.831	284041
CH 5720 spike with 5.0 ppm 005.lcd	Sample spike	CH/5217 spik	11.815	284442
CH 5720 spike with 5.0 ppm 006.lcd	Sample spike	CH/5217 spike	11.804	284111
CH 5720 spike with 5.0 ppm 008.lcd	Sample spike	CH/5217 spik	11.797	283996
CH 5720 spike with 5.0 ppm 009.lc	Sample spike	CH/5217 spik	11.791	283852

For Benzoic Acid

			Sample	
Sl. No	Area	Conc(mg/L)	Weight(g)	Conc(mg/kg)
1	247371	5.5970	10.0303	5.5801
2	248011	5.6116	10.1661	5.5199
3	248532	5.6236	10.0262	5.6089
4	248865	5.6312	10.1151	5.5671
5	249367	5.6427	10.2652	5.4969
6	249140	5.6375	10.2659	5.4915
7	249395	5.6433	10.2887	5.4850
8	249363	5.6426	10.2622	5.4984
9	247908	5.6093	10.0951	5.5564
10	248114	5.6140	10.0265	5.5991
			STDEV(s)	0.0474
			Average	5.5403
			Precision limit	0.1327
			RSD%	0.0855

For Sorbic Acid

			Sample	
SI. No	Area	Conc(mg/L)	Weight(g)	Conc(mg/kg)
1	284325	5.2104	10.0303	5.1946
2	284233	5.2087	10.1661	5.1236
3	284231	5.2086	10.0262	5.1950
4	284041	5.2051	10.1151	5.1458
5	284442	5.2126	10.2652	5.0779
6	284111	5.2064	10.2659	5.0715
7	283996	5.2042	10.2887	5.0582
8	283852	5.2015	10.2622	5.0686
9	287260	5.2652	10.0959	5.2152
10	287058	5.2614	10.0265	5.2475
			STDEV(s)	0.0698
			Average	5.1398
			Precision limit	0.1955
			RSD%	0.1358

Discussion and Conclusion

In this newly developed improved method for analysis of Benzoic Acid and Sorbic Acid in fruits and vegetable products, High Performance Liquid Chromatograph (HPLC) was used. The fruit drink, jam and tomato paste were used as representative matrix for method validation. International guide line Eurachem was used as method validation protocol. All method validation performance characteristics: Selectivity, Limit of Detection (LOD), Limit of Quantification (LOQ), Working Range and Linearity, Accuracy (Recovery) and Precision (Repeatability) were fulfilled for these three matrix. The method is sufficiently accurate, precise, robust and safe for use in BSTI laboratory. Now the method is ready for routine analysis.

References:

- 1. The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, Second Edition 2014
- 2. International Standard ISO 22855, Fruit and vegetable products- Determination of Benzoic acid and Sorbic acid concentrations-High performance liquid chromatography method